- Home
- Standard 9
- Mathematics
2. Polynomials
medium
यदि $\frac{x}{y}+\frac{y}{x}=-1(x, y \neq 0)$ है, तो $x^{3}-y^{3}$ का मान है
A
$1$
B
$\frac{1}{2}$
C
$-1$
D
$0$
Solution
$\frac{x}{y}+\frac{y}{x}=-1 \Rightarrow \frac{x^{2}+y^{2}}{x y}=-1$
$\Rightarrow \quad x^{2}+y^{2}=-x y$
Now, $x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)$
$=(x-y)(-x y+x y) \quad\left[\because x^{2}+y^{2}=-x y\right]$
$=(x-y)(0)$
$=0$
Hence, $(d)$ is the correct answer.
Standard 9
Mathematics