2. Polynomials
medium

यदि $\frac{x}{y}+\frac{y}{x}=-1(x, y \neq 0)$ है, तो $x^{3}-y^{3}$ का मान है

A

$1$

B

$\frac{1}{2}$

C

$-1$

D

$0$

Solution

$\frac{x}{y}+\frac{y}{x}=-1 \Rightarrow \frac{x^{2}+y^{2}}{x y}=-1$

$\Rightarrow \quad x^{2}+y^{2}=-x y$

Now, $x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)$

$=(x-y)(-x y+x y) \quad\left[\because x^{2}+y^{2}=-x y\right]$

$=(x-y)(0)$

$=0$

Hence, $(d)$ is the correct answer.

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.