- Home
- Standard 12
- Mathematics
જો $f(x)$ અને $g(x)$ એ બે બહુપદી છે કે જેથી $P ( x )=f\left( x ^{3}\right)+ xg \left( x ^{3}\right)$ એ $x^{2}+x+1$ દ્વારા વિભાજિત થાય છે તો $P(1)$ ની કિમંત મેળવો.
$10$
$4$
$7$
$0$
Solution
$P(x)=f\left(x^{3}\right)+\operatorname{xg}\left(x^{3}\right)$
$P (1)=f(1)+ g (1) …..(1)$
Now $P ( x )$ is divisible by $x ^{2}+ x +1$
$\Rightarrow P ( x )= Q ( x )\left( x ^{2}+ x +1\right)$
$P ( w )=0= P \left( w ^{2}\right)$ where $w , w ^{2}$ are non-real cube roots of units
$P ( x )=f\left( x ^{3}\right)+ xg \left( x ^{3}\right)$
$P ( w )=f\left( w ^{3}\right)+ wg \left( w ^{3}\right)=0$
$f(1)+\operatorname{wg}(1)=2 …..(2)$
$P \left( w ^{2}\right)=f\left( w ^{6}\right)+ w ^{2} g \left( w ^{6}\right)=0$
$f(1)+w^{2} g(1)=0 …..(3)$
$(2)+(3)$
$\Rightarrow 2 f(1)+\left(w+w^{2}\right) g(1)=0$
$2 f(1)= g (1) …..(4)$
$(2)-(3)$
$\Rightarrow\left( w – w ^{2}\right) g (1)=0$
$g(1)=0=f(1) \quad$ from (4)
from $1) \,P (1)=f(1)+ g (1)=0$