જો $f(x)$ અને $g(x)$ એ બે બહુપદી છે કે જેથી $P ( x )=f\left( x ^{3}\right)+ xg \left( x ^{3}\right)$ એ $x^{2}+x+1$ દ્વારા વિભાજિત થાય છે તો $P(1)$ ની કિમંત મેળવો.
$10$
$4$
$7$
$0$
ધારો કે વિધેય $f: R \rightarrow R$ માટે $f(x+y)=f(x) f(y)$ બધા $x, y \in R$ અને $f(1)=3$ થાય જો $\sum \limits_{i=1}^{n} f(i)=363,$ હોય તો $n$ ની કિમત શોધો
જો $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, તો $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right] =$
જો $a+\alpha=1, b+\beta=2$ અને $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0,$ તો અભિવ્યક્તિ $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ નું મૂલ્ય ..... છે.
$f$ એ $x$ અને $y$ ની બધી જ વાસ્તવિક કિમત માટે $f(xy) = \frac{f(x)}{y}$ શક્ય છે. જો $ f(30) = 20,$ તો $f(40)$ ની કિમત .......... થાય.
જો વિધેય $f(x)=\log _e\left(4 x^2+11 x+6\right)+\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ નો પ્રદેશ $(\alpha, \beta]$ હોય, તો $36|\alpha+\beta|=......$