જો ${x_1},{x_2} \in [ - 1,\,1]$ માટે $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$, તો $f(x)  =$

  • A

    $\log \frac{{(1 - x)}}{{(1 + x)}}$

  • B

    ${\tan ^{ - 1}}\frac{{(1 - x)}}{{(1 + x)}}$

  • C

    $\log \frac{{(1 + x)}}{{(1 - x)}}$

  • D

    ઉપર ના બધા

Similar Questions

 $x$ ની બધી કિમતો ધરાવતો ગણ મેળવો.

$\frac{{{x^4} - 4{x^3} + 3{x^2}}}{{({x^2} - 4)({x^2} - 7x + 10)}} \ge 0$

$f : R \to R$ માટે

$f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2mx - 1\,,}&{x \leq 0}\\
{mx - 1\,\,\,\,\,\,\,\,\,\,\,\,\,,}&{x > 0}
\end{array}} \right.$

જો $f (x)$ એક-એક વિધેય હોય તો $'m'$ ની કિમતોનો ગણ મેળવો.

ધારોકે $f$ એ પ્રત્યેક $f(x+y)=f(x)+f(y)$ માટે $x, y \in N$ અને $f(1)=\frac{1}{5}$ નું સમાધાન કરતુ વિધેય છે. જો $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$ હોય, તો $m=..........$

  • [JEE MAIN 2023]

દરેક $x\,\, \in \,R\,,x\, \ne \,0,$ જો ${f_0}(x) = \frac{1}{{1 - x}}$ અને ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$ તો ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2016]

જો  ${a_2},{a_3} \in R$ એવા છે કે જેથી $\left| {{a_2} - {a_3}} \right| = 6$ અને  $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
1&{{a_3}}&{{a_2}}\\
1&{{a_3}}&{2{a_2} - x}\\
1&{2{a_3} - x}&{{a_2}}
\end{array}} \right|,x \in R.$ હોય તો $f(x)$ ની મહત્તમ કિમત મેળવો.