Add vectors $\overrightarrow{ A }, \overrightarrow{ B }$ and $\overrightarrow{ C }$ each having magnitude of $50$ unit and inclined to the $X$-axis at angles $45^{\circ}, 135^{\circ}$ and $315^{\circ}$ respectively.
Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)
A passenger arriving in a new town wishes to go from the station to a hotel located $10 \;km$ away on a straight road from the station. A dishonest cabman takes him along a circuitous path $23\; km$ long and reaches the hotel in $28 \;min$. What is
$(a)$ the average speed of the taxi,
$(b)$ the magnitude of average velocity ? Are the two equal ?
If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.
The vector sum of two forces is perpendicular to their vector differences. In that case, the forces