The sum of the series $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots \ldots . \infty$ is
$\frac{8}{7}$
$\frac{6}{5}$
$\frac{5}{4}$
$\frac{4}{3}$
The greatest value of the function $-5 \sin \theta+12 \cos \theta$ is
A cuboidal block has dimension $(1.5 × 1.5 × 1.0)\ \ cm$ what is the surface area of cuboid (in $cm^2$)
If $\tan \theta=\frac{1}{\sqrt{5}}$ and $\theta$ lies in the first quadrant, the value of $\cos \theta$ is :
If $log_{10} (xy) = 2$, then the value of $xy$ is