- Home
- Standard 12
- Mathematics
જો $P=\left[\begin{array}{ll}1 & 0 \\ 1 / 2 & 1\end{array}\right]$ તો $P^{50}$ મેળવો.
$\left[\begin{array}{cc}1 & 25 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 25 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 50 & 1\end{array}\right]$
$\left[\begin{array}{cc}1 & 50 \\ 0 & 1\end{array}\right]$
Solution
$P=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]$
$P^{2}=\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
$P^{3}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{3}{2} & 1\end{array}\right]$
$P^{4}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
$\vdots$
$\therefore P^{50}=\left[\begin{array}{cc}1 & 0 \\ 25 & 1\end{array}\right]$