3 and 4 .Determinants and Matrices
medium

જો $P=\left[\begin{array}{ll}1 & 0 \\ 1 / 2 & 1\end{array}\right]$ તો $P^{50}$ મેળવો.

A

$\left[\begin{array}{cc}1 & 25 \\ 0 & 1\end{array}\right]$

B

$\left[\begin{array}{ll}1 & 0 \\ 25 & 1\end{array}\right]$

C

$\left[\begin{array}{ll}1 & 0 \\ 50 & 1\end{array}\right]$

D

$\left[\begin{array}{cc}1 & 50 \\ 0 & 1\end{array}\right]$

(JEE MAIN-2021)

Solution

$P=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]$

$P^{2}=\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

$P^{3}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{3}{2} & 1\end{array}\right]$

$P^{4}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$

$\vdots$

$\therefore P^{50}=\left[\begin{array}{cc}1 & 0 \\ 25 & 1\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.