જો $\vec{P}=3 \tilde{i}+\sqrt{3} \hat{j}+2 \hat{k}$ અને $\vec{Q}=4 \hat{i}+\sqrt{3} \hat{j}+2.5 \hat{k}$ હોય, તો $\vec{P} \times \vec{Q}$ ની દિશામાં એકમ સદિશ $\frac{1}{x}(\sqrt{3} i+\hat{j}-2 \sqrt{3} \hat{k})$ છે . $x$ નું મૂલ્ય $..........$ થશે.
$3$
$2$
$1$
$4$
$\vec A = 3\hat i + 4\hat j + 5\hat k$ અને $\vec B = 3\hat i + 4\hat j - 5\hat k$ સદીશો વચ્ચેનો ખૂણો ($^o$ માં) કેટલો હશે?
બે સદિશો $\overrightarrow {A} $ અને $\overrightarrow {B} $ અને તેમની વચ્ચેનો ખૂણો $\theta$, જો $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ હોય, તો $\theta$ નું મૂલ્ય કેટલું હશે?
જો $\left| {\vec A } \right|\, = \,2$ અને $\left| {\vec B } \right|\, = \,4$ હોય, તો કોલમ $-II$ માં આપેલા ખૂણાને અનુરૂપ કોલમ $-I$ માં આપેલા યોગ્ય સંબંધ સાથે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ | $(i)$ $\theta = \,{30^o}$ |
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ | $(ii)$ $\theta = \,{45^o}$ |
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ | $(iii)$ $\theta = \,{90^o}$ |
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ | $(iv)$ $\theta = \,{0^o}$ |
$ (\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B ) $ = ______