$\left( {\mathop {\,{\text{A}}}\limits^ \to \, + \;\mathop {\text{B}}\limits^ \to } \right)\,.\,\,\left( {\mathop {\,{\text{A}}}\limits^ \to \,\, \times \;\,\mathop {\text{B}}\limits^ \to \,} \right)$ નું મૂલ્ય શું છે ?
$0$
$A^2 - B^2$
$A^2 + B^2 + 2AB$
આપેલ પૈકી એક પણ નહિ
$\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ જે સદીશ છે બીજો સદીશ $\overrightarrow B $ જે $\overrightarrow A$ ને લંબ હોય તો .... થાય.
જો $\left| {\vec A } \right|\, = \,2$ અને $\left| {\vec B } \right|\, = \,4$ હોય, તો કોલમ $-II$માં આપેલા ખૂણાને અનુરૂપ કોલમ $-I$માં આપેલા યોગ્ય સંબંધ સાથે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ | $(i)$ $\theta = \,{0^o}$ |
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ | $(ii)$ $\theta = \,{90^o}$ |
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ | $(iii)$ $\theta = \,{180^o}$ |
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ | $(iv)$ $\theta = \,{60^o}$ |
દર્શાવો કે $a \cdot( b \times c )$ એ ત્રણ સદિશો $a b$ અને $c$ થી બનતા સમાંતરબાજુ ચતુષ્કલકના કર બરાબર હોય છે.
જો બે સદીશ $\vec{A}$ અને $\vec{B}$ માટે $\vec{A} . \vec{B}=[\vec{A} \times \vec{B}]$ સંબધ સાચો હોય, તો $[\vec{A}-\vec{B}]$ નું મૂલ્ય કેટલું હશે?
જો $ \vec A.\vec B = - |A||B|, $ તો બે સદિશો $ \overrightarrow A $ અને $ \overrightarrow B $ વચ્ચે ખૂણો કેટલો હશે?