If $Q = \left\{ {x:x = {1 \over y},\,{\rm{where \,\,}}y \in N} \right\}$, then
$0 \in Q$
$1 \in Q$
$2 \in Q$
${2 \over 3} \in Q$
Consider the sets
$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$
Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:
$A \ldots C$
Decide, among the following sets, which sets are subsets of one and another:
$A = \{ x:x \in R$ and $x$ satisfy ${x^2} - 8x + 12 = 0 \} ,$
$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$
Which of the following are examples of the null set
$\{ x:x$ is a natural numbers, $x\, < \,5$ and $x\, > \,7\} $
Examine whether the following statements are true or false :
$\{a\} \subset\{a, b, c\}$
State which of the following sets are finite or infinite :
$\{ x:x \in N$ and $x$ is odd $\} $