1.Set Theory
easy

If $A$ and $B$ are two sets, then $A \cup B = A \cap B$ iff

A

$A \subseteq B$

B

$B \subseteq A$

C

$A = B$

D

None of these

Solution

(c) Let $x \in A \Rightarrow x \in A \cup B$,$[\because A \subseteq A \cup B]$

==> $x \in A \cap B$,$[\because A \cup B = A \cap B]$

==> $x \in A$ and $x \in B$ ==> $x \in B$, $\therefore A \subseteq B$

Similarly, $x \in B$ ==> $x \in A$, $\therefore B \subseteq A$

Now $A \subseteq B,\,\,B \subseteq A$ ==> $A = B$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.