Show that $A \cup B=A \cap B$ implies $A=B$.
Let $a \in A.$ Then $a \in A \cup$ $B$. Since $A \cup B=A \cap B, a \in A \cap B$.
So $a \in B$
Therefore, $A \subset$ $B.$ Similarly, if $b \in B$, then $b \in A \cup$ $B.$
Since $A \cup B=A \cap B, b \in A \cap B .$ So, $b \in A .$
Therefore, $B \subset A .$ Thus, $A=B$
Which of the following pairs of sets are disjoint
$\{ x:x$ is an even integer $\} $ and $\{ x:x$ is an odd integer $\} $
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $
$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $
If $X$ and $Y$ are two sets such that $n( X )=17, n( Y )=23$ and $n( X \cup Y )=38$
find $n( X \cap Y )$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup C$
If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to