If $A$ and $B$ are any two sets, then $A \cap (A \cup B)$ is equal to
$A$
$B$
${A^c}$
${B^c}$
Let $A$ and $B$ be two sets. Then
If $A, B$ and $C$ are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$ then
Let $A :\{1,2,3,4,5,6,7\}$. Define $B =\{ T \subseteq A$ : either $1 \notin T$ or $2 \in T \}$ and $C = \{ T \subseteq A : T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is $\dots\dots$
If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ = . . . . .
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup C} \right)$