For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$
Let $X \in P\left( {A \cap B} \right).$ Then $X \subset A \cap B.$ So, $X \subset A$ and $X \subset B.$ Therefore, $X \in P\left( A \right)$ and $X \in P\left( B \right)$ which implies $X \in P\left( A \right) \cap P\left( B \right).$ This given $P\left( {A \cap B} \right) \subset P\left( A \right) \cap P\left( B \right).$ Let $Y \in P\left( A \right) \cap P\left( B \right).$ Then $Y \in P\left( A \right)$ and $Y \in P\left( B \right).$ So, $Y \subset A$ and $Y \subset B$ Therefore, $Y \subset A \cap B,$ Which implies $Y \in P\left( {A \cap B} \right).$ This gives
$P\left( A \right) \cap P\left( B \right) \subset P\left( {A \cap B} \right)$
Hence $P\left( {A \cap B} \right) = P\left( A \right) \cap P\left( B \right)$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$A-D$
If $A, B$ and $C$ are non-empty sets, then $(A -B) \cup (B -A)$ equals
If $A$ and $B$ are two sets then $(A -B) \cup (B -A) \cup (A \cap B)$ is equal to
If $aN = \{ ax:x \in N\} $ and $bN \cap cN = dN$, where $b$, $c \in N$ are relatively prime, then
State whether each of the following statement is true or false. Justify you answer.
$\{2,6,10\}$ and $\{3,7,11\}$ are disjoint sets.