જો બે ગણ $A$ અને $B$ આપેલ હોય તો $A \cap (A \cup B)$ મેળવો.
$A$
$B$
${A^c}$
${B^c}$
(a) $A \cap (A \cup B) = A$, $[\because A \subseteq B \cup A]$.
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $A-B$
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap D$
જો $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6\}, C = \{3, 4, 6\},$ તો $(A \cup B) \cap C$ મેળવો.
વિધાન સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો : $\{2,3,4,5\}$ અને $\{3,6\}$ પરસ્પર અલગગણ છે.
જો $A, B$ અને $C$ એવા ગણ છે કે જેથી $\phi \ne A \cap B \subseteq C$ તો નીચેનામાંથી ક્યુ વિધાન ખોટું છે
Confusing about what to choose? Our team will schedule a demo shortly.