જો $A$ અને $B$ બે ગણ હોય તો $A × B = B × A$ થવા માટે. . .
$A \subseteq B$
$B \subseteq A$
$A = B$
એકપણ નહી.
નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $A$ અને $B$ અરિક્ત ગણો હોય, તો જ્યાં $x \in A$ તથા $y \in B$ હોય તેવી તમામ ક્રમયુક્ત જોડો $(x, y)$ થી બનતો અરિક્ત ગણ $A \times B$ છે.
નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $A=\{1,2\}, B=\{3,4\},$ તો $A \times\{B \cap \varnothing\}=\varnothing$ છે.
ધારો કે $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ અને $D=\{5,6,7,8\},$ તો નીચેનાં પરિણામો ચકાસો : $A \times C$ એ $B \times D$ નો ઉપગણ છે.
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $(A \times B) \cap(A \times C)$
જો $A=\{-1,1\},$ તો $A \times A \times A$ મેળવો.