જો $A$ અને $B$ બે ગણ હોય તો $A × B = B × A$ થવા માટે. . .
$A \subseteq B$
$B \subseteq A$
$A = B$
એકપણ નહી.
જો $P=\{a, b, c\}$ અને $Q=\{r\},$ તો $P \times Q$ અને $P \times Q$ શોધો.
જો કાર્તેઝિય ગુણાકાર $A$ $\times$ $A$ ના ઘટકોની સંખ્યા $9$ હોય અને તેમાંના બે ઘટકો $(-1,0)$ અને $(0,1)$ હોય, તો $A$ શોધો તથા $A$ $\times$ $A$ ના બાકીના ઘટકો લખો.
જો $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, તો $n(C) = $
ધારો કે $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ અને $D=\{5,6,7,8\},$ તો નીચેનાં પરિણામો ચકાસો : $A \times(B \cap C)=(A \times B) \cap(A \times C)$
જો $(1, 3), (2, 5)$ અને $(3, 3)$ એ $A × B$ ના ઘટકો હોય અને જો $A \times B$ માં કુલ $6$ ઘટકો છે તો $A \times B$ ના બાકીના ઘટકો મેળવો.