જો $n(A)=3$ અને $n(B)=2$ હોય તેવા બે ગણો $A$ અને $B$ હોય અને ભિન્ન ઘટકો $x, y$ અને $z$ માટે $(x, 1),(y, 2),(z, 1)$ એ $A \times B$ ના ઘટકો હોય તો $A$ અને $B$ શોધો.
નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $A$ અને $B$ અરિક્ત ગણો હોય, તો જ્યાં $x \in A$ તથા $y \in B$ હોય તેવી તમામ ક્રમયુક્ત જોડો $(x, y)$ થી બનતો અરિક્ત ગણ $A \times B$ છે.
જો $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. તો $(A × B) \cap (B × A)$ ની સભ્ય સંખ્યા મેળવો.
$A = \{1, 2, 3\}$ અને $B = \{3, 8\}$, તો $(A \cup B) × (A \cap B) = . . . $
જો $(1, 3), (2, 5)$ અને $(3, 3)$ એ $A × B$ ના ઘટકો હોય અને જો $A \times B$ માં કુલ $6$ ઘટકો છે તો $A \times B$ ના બાકીના ઘટકો મેળવો.