If $A$ and $B$ be any two sets, then $(A \cap B)'$ is equal to
$A' \cap {\rm B}'$
$A' \cup B'$
$A \cap B$
$A \cup B$
If $n(U)$ = $600$ , $n(A)$ = $100$ , $n(B)$ = $200$ and $n(A \cap B )$ = $50$, then $n(\bar A \cap \bar B )$ is
($U$ is universal set and $A$ and $B$ are subsets of $U$)
Fill in the blanks to make each of the following a true statement :
$A \cap A^{\prime}=\ldots$
Draw appropriate Venn diagram for each of the following:
$(A \cup B)^{\prime}$
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x \in N$ and $2x + 1\, > \,10\} $
Given $n(U) = 20$, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$, where $U$ is the universal set, $A$ and $B$ are subsets of $U$, then $n({(A \cup B)^C}) = $