If $A$ and $B$ be any two sets, then $(A \cap B)'$ is equal to
$A' \cap {\rm B}'$
$A' \cup B'$
$A \cap B$
$A \cup B$
(b) From De’ morgan’s law, $(A \cap B)' = A' \cup B'$.
Fill in the blanks to make each of the following a true statement :
$\varnothing^ {\prime}\cap A$
Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}$ and $B=\{3,4,5\}$
Find $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ and hence show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x$ is a prime number $\} $
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$A^{\prime}$
$A \cup A^{\prime}=\ldots$
Confusing about what to choose? Our team will schedule a demo shortly.