If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
$U=\{1,2,3,4,5,6,7,8,9\}$
$A=\{2,4,6,8\}, B=\{2,3,5,7\}$
$(A \cup B)^{\prime}=\{2,3,4,5,6,7,8\}^{\prime}=\{1,9\}$
$A^{\prime} \cap B^{\prime}=\{1,3,5,7,9\} \cap\{1,4,6,8,9\}=\{1,9\}$
$\therefore(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{x: 2 x+5=9\}$
If $A$ and $B$ be any two sets, then $(A \cap B)'$ is equal to
Draw appropriate Venn diagram for each of the following:
$(A \cup B)^{\prime}$
Draw appropriate Venn diagram for each of the following:
$A^{\prime} \cup B^{\prime}$
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$A=\{a, b, c\}$