If $A = \{x, y\}$ then the power set of $A$ is
$\{ {x^x},\,{y^y}\} $
$\{ \phi,x, y\}$
$\{\phi, {x}, {2y}\}$
$\{\phi, x, y, \{ x, y \} \}$
The number of elements in the set $\left\{ n \in N : 10 \leq n \leq 100\right.$ and $3^{ n }-3$ is a multiple of $7\}$ is $........$.
If $\mathrm{S}=\{\mathrm{a} \in \mathrm{R}:|2 \mathrm{a}-1|=3[\mathrm{a}]+2\{\mathrm{a}\}\}$, where $[\mathrm{t}]$ denotes the greatest integer less than or equal to $t$ and $\{t\}$ represents the fractional part of $t$, then $72 \sum_{\mathrm{a} \in \mathrm{S}} \mathrm{a}$ is equal to....................
Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If
$A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in N, a_{1}, a_{2}, a_{3}, \ldots, a_{k} \in S\right\}$ then the sum of all the elements in the set $T - A$ is equal to $......$
If $X = \{ {8^n} - 7n - 1:n \in N\} $ and $Y = \{ 49(n - 1):n \in N\} ,$ then
Let $S$ be the set of all ordered pairs $(x, y)$ of positive integers satisfying the condition $x^2-y^2=12345678$. Then,