Let $A_1, A_2, \ldots \ldots, A_m$ be non-empty subsets of $\{1,2,3, \ldots, 100\}$ satisfying the following conditions:

$1.$ The numbers $\left|A_1\right|,\left|A_2\right|, \ldots,\left|A_m\right|$ are distinct.

$2.$ $A_1, A_2, \ldots, A_m$ are pairwise disjoint.(Here $|A|$ donotes the number of elements in the set $A$ )Then, the maximum possible value of $m$ is

  • [KVPY 2016]
  • A

    $13$

  • B

    $14$

  • C

    $15$

  • D

    $16$

Similar Questions

If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ is equal to

Let $S = \{1, 2, 3, ….., 100\}$. The number of non-empty subsets $A$ of $S$ such that the product of elements in $A$ is even is

  • [JEE MAIN 2019]

Let the set $C=\left\{(x, y) \mid x^2-2^y=2023, x, y \in \mathbb{N}\right\}$. Then $\sum_{(x, y) \in C}(x+y)$ is equal to

  • [JEE MAIN 2024]

If $\mathrm{A}=\{\mathrm{x} \in {R}:|\mathrm{x}-2|>1\}, \mathrm{B}=\left\{\mathrm{x} \in {R}: \sqrt{\mathrm{x}^{2}-3}>1\right\}$, $\mathrm{C}=\{\mathrm{x} \in {R}:|\mathrm{x}-4| \geq 2\}$ and ${Z}$ is the set of all integers, then the number of subsets of the set $(A \cap B \cap C)^{c} \cap {Z}$ is .... .

  • [JEE MAIN 2021]

Let $\bigcup \limits_{i=1}^{50} X_{i}=\bigcup \limits_{i=1}^{n} Y_{i}=T$ where each $X_{i}$ contains $10$ elements and each $Y_{i}$ contains $5$ elements. If each element of the set $T$ is an element of exactly $20$ of sets $X_{i}$ 's and exactly $6$ of sets $Y_{i}$ 's, then $n$ is equal to

  • [JEE MAIN 2020]