If $R \subset A \times B$ and $S \subset B \times C\,$ be two relations, then ${(SoR)^{ - 1}} = $
${S^{ - 1}}o{R^{ - 1}}$
${R^{ - 1}}o{S^{ - 1}}$
$SoR$
$RoS$
(b) It is obvious.
The number of reflexive relations of a set with four elements is equal to
Show that the relation $R$ in the set $A$ of all the books in a library of a college, given by $R =\{(x, y): x $ and $y$ have same number of pages $\}$ is an equivalence relation.
If $R$ is an equivalence relation on a Set $A$, then $R^{-1}$ is not :-
Let a relation $R$ be defined by $R = \{(4, 5); (1, 4); (4, 6); (7, 6); (3, 7)\}$ then ${R^{ – 1}}oR$ is
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R =\{(x, y): x$ and $y$ live in the same locality $\}$
Confusing about what to choose? Our team will schedule a demo shortly.