Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $R$ in the set $A$ of human beings in a town at a particular time given by

$R =\{(x, y): x$ and $y$ live in the same locality $\}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$R =\{( x , y ): x$ and $y $  live in the same locality $\}$

Clearly, $( x , x ) \in R$ as $x$ and $x$ is the same human being.

$\therefore R$ is reflexive.

If $(x, y) \in R,$ then $x$ and $y$ live in the same locality.

$\Rightarrow y$ and $x$ live in the same locality.

$\Rightarrow(y, x) \in R$

$\therefore R$ is symmetric.

Now, let $(x, y) \in R$ and $(y, z) \in R$

$\Rightarrow x$ and $y$ live in the same locality and $y$ and $z$ live in the same locality.

$\Rightarrow x$ and $z$ live in the same locality.

$\Rightarrow(x, z) \in R$

$\therefore R$ is transitive.

Hence, $R$ is reflexive, symmetric and transitive.

Similar Questions

A relation from $P$ to $Q$ is

If $R$ is a relation from a set $A$ to a set $B$ and $S$ is a relation from $B$ to a set $C$, then the relation $SoR$

The minimum number of elements that must be added to the relation $R =\{( a , b ),( b , c )\}$ on the set $\{a, b, c\}$ so that it becomes symmetric and transitive is:

  • [JEE MAIN 2023]

Let $R= \{(3, 3) (5, 5), (9, 9), (12, 12), (5, 12), (3, 9), (3, 12), (3, 5)\}$ be a relation on the set $A= \{3, 5, 9, 12\}.$ Then, $R$ is

  • [JEE MAIN 2013]

Let $A=\{1,2,3, \ldots \ldots .100\}$. Let $R$ be a relation on A defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $\mathrm{R} \subset \mathrm{R}_1$ and the number of elements in $\mathrm{R}_1$ is $\mathrm{n}$. Then, the minimum value of $n$ is..........................

  • [JEE MAIN 2024]