If $X = \{ {8^n} - 7n - 1:n \in N\} $ and $Y = \{ 49(n - 1):n \in N\} ,$ then

  • A

    $X \subseteq Y$

  • B

    $Y \subseteq X$

  • C

    $X = Y$

  • D

    None of these

Similar Questions

Let $A = \{x:x \in R,\,|x|\, < 1\}\,;$ $B = \{x:x \in R,\,|x - 1| \ge 1\}$ and $A \cup B = R - D,$then the set $D$ is

Consider the two sets :  $A=\{m \in R:$ both the roots of $x^{2}-(m+1) x+m+4=0$ are real $\}$ and $B=[-3,5)$  Which of the following is not true?

  • [JEE MAIN 2020]

Let $\bigcup \limits_{i=1}^{50} X_{i}=\bigcup \limits_{i=1}^{n} Y_{i}=T$ where each $X_{i}$ contains $10$ elements and each $Y_{i}$ contains $5$ elements. If each element of the set $T$ is an element of exactly $20$ of sets $X_{i}$ 's and exactly $6$ of sets $Y_{i}$ 's, then $n$ is equal to

  • [JEE MAIN 2020]

Let $S = \{1, 2, 3, ….., 100\}$. The number of non-empty subsets $A$ of $S$ such that the product of elements in $A$ is even is

  • [JEE MAIN 2019]

If $\mathrm{A}=\{\mathrm{x} \in {R}:|\mathrm{x}-2|>1\}, \mathrm{B}=\left\{\mathrm{x} \in {R}: \sqrt{\mathrm{x}^{2}-3}>1\right\}$, $\mathrm{C}=\{\mathrm{x} \in {R}:|\mathrm{x}-4| \geq 2\}$ and ${Z}$ is the set of all integers, then the number of subsets of the set $(A \cap B \cap C)^{c} \cap {Z}$ is .... .

  • [JEE MAIN 2021]