If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $

  • A

    ${N_7}$

  • B

    ${N_{12}}$

  • C

    ${N_3}$

  • D

    ${N_4}$

Similar Questions

If $A =$ [$x:x$ is a multiple of $3$] and $B =$ [$x:x$ is a multiple of $5$], then $A -B$ is ($\bar A$ means complement of $A$)

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$D-A$

If $A$ and $B$ are not disjoint sets, then $n(A \cup B)$ is equal to

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap D$

Show that the following four conditions are equivalent:

$(i)A \subset B\,\,\,({\rm{ ii }})A - B = \phi \quad (iii)A \cup B = B\quad (iv)A \cap B = A$