If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $
${N_7}$
${N_{12}}$
${N_3}$
${N_4}$
Which of the following pairs of sets are disjoint
$\{a, e, i, o, u\}$ and $\{c, d, e, f\}$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$B \cap D$
State whether each of the following statement is true or false. Justify you answer.
$\{2,6,10,14\}$ and $\{3,7,11,15\}$ are disjoint sets.
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and multiple of $3\} $
$B = \{ x:x$ is a natural number less than $6\} $
Let $A$ and $B$ be subsets of a set $X$. Then