If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap D$
$A \cap D=\varnothing$
Let $\mathrm{X}=\{\mathrm{n} \in \mathrm{N}: 1 \leq \mathrm{n} \leq 50\} .$ If $A=\{n \in X: n \text { is a multiple of } 2\}$ and $\mathrm{B}=\{\mathrm{n} \in \mathrm{X}: \mathrm{n} \text { is a multiple of } 7\},$ then the number of elements in the smallest subset of $X$ containing both $\mathrm{A}$ and $\mathrm{B}$ is
Find the union of each of the following pairs of sets :
$A=\{1,2,3\}, B=\varnothing$
If $n(A) = 3$ and $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cap B$ is equal to
Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X ,$ show that $A = B$
( Hints $A = A \cap (A \cup X),B = B \cap (B \cup X)$ and use Distributive law )
$\left( {A \cap B} \right) \cap \left( {B \cup C} \right)$
Confusing about what to choose? Our team will schedule a demo shortly.