જો $A = \{ x:{x^2} - 5x + 6 = 0\} ,\,B = \{ 2,\,4\} ,\,C = \{ 4,\,5\} ,$ તો $A \times (B \cap C)$ = . . . .
$\{(2, 4), (3, 4)\}$
$\{(4, 2), (4, 3)\}$
$\{(2, 4), (3, 4), (4, 4)\}$
$\{(2,2), (3,3), (4,4), (5,5)\}$
જો બે ગણ $A$ અને $B$ માં $99$ ઘટકો સામાન્ય છે, તો $A \times B$ અને $B \times A$ ના સામાન્ય ઘટકોની સંખ્યા મેળવો.
જો $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, તો $n(C) = $
નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $A$ અને $B$ અરિક્ત ગણો હોય, તો જ્યાં $x \in A$ તથા $y \in B$ હોય તેવી તમામ ક્રમયુક્ત જોડો $(x, y)$ થી બનતો અરિક્ત ગણ $A \times B$ છે.
$A = \{1, 2, 3\}$ અને $B = \{3, 8\}$, તો $(A \cup B) × (A \cap B) = . . . $
જો $(1, 3), (2, 5)$ અને $(3, 3)$ એ $A × B$ ના ઘટકો હોય અને જો $A \times B$ માં કુલ $6$ ઘટકો છે તો $A \times B$ ના બાકીના ઘટકો મેળવો.