જો કાર્તેઝિય ગુણાકાર $A$ $\times$ $A$ ના ઘટકોની સંખ્યા $9$ હોય અને તેમાંના બે ઘટકો $(-1,0)$ અને $(0,1)$ હોય, તો $A$ શોધો તથા $A$ $\times$ $A$ ના બાકીના ઘટકો લખો.
જો $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. તો $(A × B) \cap (B × A)$ ની સભ્ય સંખ્યા મેળવો.
જો $A$ અને $B$ બે ગણ હોય તો $A × B = B × A$ થવા માટે. . .
જો $A = \{2, 3, 5\}, B = \{2, 5, 6\},$ તો $(A -B) × (A \cap B)$ મેળવો.
જો $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ તો $n(A \times B)$ =