If $A$ denotes the sum of all the coefficients in the expansion of $\left(1-3 x+10 x^2\right)^n$ and $B$ denotes the sum of all the coefficients in the expansion of $\left(1+x^2\right)^n$, then :

  • [JEE MAIN 2024]
  • A

     $\mathrm{A}=\mathrm{B}^3$

  • B

     $3 A=B$

  • C

     $B=A^3$

  • D

     $\mathrm{A}=3 \mathrm{~B}$

Similar Questions

$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=

$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $

Let $K$ be the sum of the coefficients of the odd powers of $x$ in the expansion of $(1+ x )^{99}$. Let a be the middle term in the expansion of $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$. If $\frac{{ }^{200} C _{99} K }{ a }=\frac{2^{\ell} m }{ n }$, where $m$ and $n$ are odd numbers, then the ordered pair $(l, n )$ is equal to :

  • [JEE MAIN 2023]

If the sum of the coefficients in the expansion of $(x+y)^{n}$ is $4096,$ then the greatest coefficient in the expansion is .... .

  • [JEE MAIN 2021]

In the polynomial $(x - 1)(x - 2)(x - 3).............(x - 100),$ the coefficient of ${x^{99}}$ is