If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to
$k$
${1 \over 5}$
$5$
$(b)$ and $(c)$ both
If ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ the number of digits in ${3^{12}} \times {2^8} $ is
The sum of all the natural numbers for which $log_{(4-x)}(x^2 -14x + 45)$ is defined is -
Let $n$ be the smallest positive integer such that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 4$. Which one of the following statements is true?
If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to