The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$

  • A

    $\left( {0,{5^{ - 2\sqrt 5 }}} \right]$

  • B

    $\left[ {{5^{2\sqrt 5 }},\infty } \right)$

  • C

    Both $(A)$ $\&$ $(B)$

  • D

    $(0, \infty )$

Similar Questions

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in

Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is

  • [KVPY 2009]

If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct

The value of $\left(\left(\log _2 9\right)^2\right)^{\frac{1}{\log _2\left(\log _2 9\right)}} \times(\sqrt{7})^{\frac{1}{\log _4 7}}$ is. . . . . . .

  • [IIT 2018]