If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to
$125$
${a^2}$
$25$
None of these
(c) ${\log _5}a.{\log _a}x = 2$ $\Rightarrow $ ${\log _5}x = 2$
$ \Rightarrow $ $x = {5^2} = 25$.
The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is
The value of $\sqrt {(\log _{0.5}^24)} $ is
If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is
Let $n$ be the smallest positive integer such that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 4$. Which one of the following statements is true?
Confusing about what to choose? Our team will schedule a demo shortly.