If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is

  • A

    an odd prime

  • B

    an even prime

  • C

    an odd composite

  • D

    an irrational number

Similar Questions

If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then

Let $\left(x_0, y_0\right)$ be the solution of the following equations $(2 x)^{\ln 2} =(3 y)^{\ln 3}$ $3^{\ln x} =2^{\ln y}$ . Then $x_0$ is

  • [IIT 2011]

The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is

  • [KVPY 2017]

The value of $\sqrt {(\log _{0.5}^24)} $ is

The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is