Gujarati
Basic of Logarithms
normal

The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is

A

$4$

B

$5$

C

$3$

D

$1$

(IIT-2012)

Solution

Let $\sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}}}} \ldots \ldots . .= t$

$\sqrt{4-\frac{1}{3 \sqrt{2}} t}=t $

$4-\frac{1}{3 \sqrt{2}} t=t^2 \Rightarrow $

$t^2+\frac{1}{3 \sqrt{2}} t-4=0 \Rightarrow 3 \sqrt{2} t^2+t-12 \sqrt{2}=0 $

$t=\frac{-1 \pm \sqrt{1+4 \times 3 \sqrt{2} \times 12 \sqrt{2}}}{2 \times 3 \sqrt{2}}=\frac{-1 \pm 17}{2 \times 3 \sqrt{2}}$

$t=\frac{16}{6 \sqrt{2}}, \frac{-18}{6 \sqrt{2}}$

$t =\frac{8}{3 \sqrt{2}}, \frac{-3}{\sqrt{2}}$ and $\frac{-3}{\sqrt{2}}$ is rejected

$\text { so } 6+\log _{3 / 2}\left(\frac{1}{3 \sqrt{2}} \times \frac{8}{3 \sqrt{2}}\right)=6+\log _{3 / 2}\left(\frac{4}{9}\right)=6+\log _{3 / 2}\left(\left(\frac{2}{3}\right)^2\right)=6-2=4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.