If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to

  • A

    $2$

  • B

    $3$

  • C

    $5$

  • D

    $7$

Similar Questions

If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$

If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then

Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is

The number of solution of ${\log _2}(x + 5) = 6 - x$ is

The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is