$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $

  • A

    ${{n(n + 1)} \over 2}{\log _a}2$

  • B

    ${{n(n + 1)} \over 2}{\log _2}a$

  • C

    ${{{{(n + 1)}^2}{n^2}} \over 4}{\log _2}a$

  • D

    None of these

Similar Questions

If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is

The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is

If ${\log _{12}}27 = a,$ then ${\log _6}16 = $

$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to

The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is