If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be
$a = b$
$a = {b \over 2}$
$a =2 b$
$a = {b \over 3}$
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in
If ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ the number of digits in ${3^{12}} \times {2^8} $ is
Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is
If $n = 1983!$, then the value of expression $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$ is equal to
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval