If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be
$a = b$
$a = {b \over 2}$
$a =2 b$
$a = {b \over 3}$
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
Let $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum \limits_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2-b+c$ is equal to $................$.
The value of ${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}}$ is equal to
The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is
If ${\log _{10}}x = y,$ then ${\log _{1000}}{x^2} $ is equal to