If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    None of these

Similar Questions

If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then

Let $\left(x_0, y_0\right)$ be the solution of the following equations $(2 x)^{\ln 2} =(3 y)^{\ln 3}$ $3^{\ln x} =2^{\ln y}$ . Then $x_0$ is

  • [IIT 2011]

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct

If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then

If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to