If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$
$1$
$2$
$3$
None of these
If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then
Let $\left(x_0, y_0\right)$ be the solution of the following equations $(2 x)^{\ln 2} =(3 y)^{\ln 3}$ $3^{\ln x} =2^{\ln y}$ . Then $x_0$ is
If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct
If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then
If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to