If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    None of these

Similar Questions

If ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ the number of digits in ${3^{12}} \times {2^8} $ is

If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is

The number of solution $(s)$ of the equation $log_7(2^x -1) + log_7(2^x -7) = 1$, is -

If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then

Let $a, b, x$ be positive real numbers with $a \neq 1$, $x \neq 1$, ab $\neq 1$. Suppose $\log _{ a } b =10$, and $\frac{\log _{ a } x \log _{ x }\left(\frac{ b }{ a }\right)}{\log _{ x } b \log _{ ab } x }=\frac{ p }{ q }$, where $p$ and $q$ are positive integers which are coprime. Then $p+q$ is

  • [KVPY 2021]