Let $a , b , c$ be three distinct positive real numbers such that $(2 a)^{\log _{\varepsilon} a}=(b c)^{\log _e b}$ and $b^{\log _e 2}=a^{\log _e c}$. Then $6 a+5 b c$ is equal to $........$.
$6$
$4$
$3$
$8$
For $y = {\log _a}x$ to be defined $'a'$ must be
$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
If $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$then which of the following is equal to $1$
If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
If $n = 1983!$, then the value of expression $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$ is equal to