If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$
$1$
$3$
$4$
$0$
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
${a^{m{{\log }_a}n}} = $
The value of the fifth root of $10^{10^{10}}$ is