- Home
- Standard 11
- Mathematics
Basic of Logarithms
medium
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $
A
$0$
B
$1$
C
$xy$
D
None of these
Solution
(b) ${a^x} = {b^y} = {(ab)^{xy}}$
$ \Rightarrow $$x\ln a = y\ln b = xy\ln (ab) = k\,{\rm{(say)}}$
$\ln a = {k \over x},\,\,\ln b = {k \over y}$
$\ln (a\,b) = {k \over {xy}}$$ \Rightarrow $ $\ln a + \ln b = {k \over {xy}}$
$ \Rightarrow$ ${k \over x} + {k \over y} = {k \over {xy}}$
$ \Rightarrow $ ${1 \over x} + {1 \over y} = {1 \over {xy}}$ $ \Rightarrow $ ${{x + y} \over {xy}} = {1 \over {xy}}$;
$\therefore x + y = 1$.
Standard 11
Mathematics