If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

  • A

    $0$

  • B

    $1$

  • C

    $xy$

  • D

    None of these

Similar Questions

${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $

If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $

$\sqrt {(3 + \sqrt 5 )} $ is equal to

$\root 4 \of {(17 + 12\sqrt 2 )} = $

${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $