If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is

  • A

    $n$

  • B

    ${n^{1/m}}$

  • C

    ${n^{1/(n - 1)}}$

  • D

    None of these

Similar Questions

Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$

If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$

If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$

The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $

${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $