If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is
$n$
${n^{1/m}}$
${n^{1/(n - 1)}}$
None of these
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $