- Home
- Standard 11
- Physics
7.Gravitation
hard
If $R$ is the radius of the earth and the acceleration due to gravity on the surface of earth is $g=\pi^2 \mathrm{~m} / \mathrm{s}^2$, then the length of the second's pendulum at a height $h=2 R$ from the surface of earth will be,:
A
$\frac{2}{9} \mathrm{~m}$
B
$\frac{1}{9} \mathrm{~m}$
C
$\frac{4}{9} \mathrm{~m}$
D
$\frac{8}{9} \mathrm{~m}$
(JEE MAIN-2024)
Solution
$\mathrm{g}^{\prime}=\frac{\mathrm{GMe}}{(3 \mathrm{R})^2}=\frac{1}{9} \mathrm{~g}$
$\mathrm{~T}=2 \pi \sqrt{\frac{\ell}{\mathrm{g}^{\prime}}}$
Since the time period of second pendulum is $2 \mathrm{sec}$.
$\mathrm{T}=2 \mathrm{sec}$
$2=2 \pi \sqrt{\frac{\ell}{\mathrm{g}} 9}$
$\ell=\frac{1}{9} \mathrm{~m}$
Standard 11
Physics