7.Gravitation
hard

If $R$ is the radius of the earth and the acceleration due to gravity on the surface of earth is $g=\pi^2 \mathrm{~m} / \mathrm{s}^2$, then the length of the second's pendulum at a height $h=2 R$ from the surface of earth will be,:

A

$\frac{2}{9} \mathrm{~m}$

B

$\frac{1}{9} \mathrm{~m}$

C

$\frac{4}{9} \mathrm{~m}$

D

$\frac{8}{9} \mathrm{~m}$

(JEE MAIN-2024)

Solution

$\mathrm{g}^{\prime}=\frac{\mathrm{GMe}}{(3 \mathrm{R})^2}=\frac{1}{9} \mathrm{~g}$

$\mathrm{~T}=2 \pi \sqrt{\frac{\ell}{\mathrm{g}^{\prime}}}$

Since the time period of second pendulum is $2 \mathrm{sec}$.

$\mathrm{T}=2 \mathrm{sec}$

$2=2 \pi \sqrt{\frac{\ell}{\mathrm{g}} 9}$

$\ell=\frac{1}{9} \mathrm{~m}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.