Basic of Logarithms
medium

જો ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$ તો $\sum {(1/x) = } $

A

$1$

B

$0$

C

$abc$

D

એકપણ નહીં

Solution

(a) ${a^{x – 1}} = bc \Rightarrow {a^x} = abc$

$\therefore {a^x} = {b^y} = {c^z} = abc = k\,({\rm{say}})$

$ \Rightarrow $$a = {k^{1/x}} \Rightarrow {1 \over x} = {\log _k}a$; $\sum\limits_{}^{} {{1 \over x} = {{\log }_k}a + {{\log }_k}b + {{\log }_k}c} = {\log _k}abc = {\log _{abc}}abc = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.