If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$
$0$
$1$
$n$
$2n$
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
If $x = {2^{1/3}} - {2^{ - 1/3}},$ then $2{x^3} + 6x = $
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is