Basic of Logarithms
easy

If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$

A

$0$

B

$1$

C

$n$

D

$2n$

Solution

(d) ${2^{m(n + 1) + 2n + n}} = {2^{(m + 1)n + 2m}}$

$ \Rightarrow $$mn + m + 3n = mn + 2m + n$$ \Rightarrow $$m = 2n$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.