If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$

  • A

    $0$

  • B

    $1$

  • C

    $n$

  • D

    $2n$

Similar Questions

If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$

${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $

Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$

The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is

  • [KVPY 2012]

${a^{m{{\log }_a}n}} = $