If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $

  • A

    $11/48$

  • B

    $11/24$

  • C

    $11/8$

  • D

    $11/96$

Similar Questions

If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),}  $ then

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

$\root 4 \of {(17 + 12\sqrt 2 )} = $

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is