- Home
- Standard 11
- Mathematics
Basic of Logarithms
hard
The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is
A
$1$
B
$2$
C
$3$
D
$4$
(KVPY-2012)
Solution
(b)
Let $x=0.75$
According to the question, $\frac{x^3}{1-x}+\left(x+x^2+1\right)$
$=\frac{x^3+(1-x)\left(1+x+x^2\right)}{1-x}$
$=\frac{x^3+1-x^3}{1-x}=\frac{1}{1-x}$
Now, put the value of $x$
$\frac{1}{1-0.75} =\frac{1}{0.25}$
$=\frac{100}{25}=4$
So, square root of the equation $=\sqrt{4}=2$
Standard 11
Mathematics