The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is
$1$
$2$
$3$
$4$
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17} $ is