4-1.Complex numbers
medium

If $\frac{{3x + 2iy}}{{5i - 2}} = \frac{{15}}{{8x + 3iy}}$, then

A

$x = 1,y = - 3$

B

$x = - 1,y = 3$

C

$x = 1,y = 3$

D

$x = - 1,y = - 3$or $x = 1,$$y = 3$

Solution

(d) Given that $\frac{{3x + 2iy}}{{5i – 2}} = \frac{{15}}{{8x + 3iy}}$
==> $24{x^2} + 9ixy – 6{y^2} + 16ixy = 75i – 30$
==> $24{x^2} – 6{y^2} + 25ixy = 75i – 30$
Equating real and imaginary parts, we get
$24{x^2} – 6{y^2} = – 30$or $4{x^2} – {y^2} = – 5$and $xy = 3$
On solving we get $x = \pm 1,y = \pm 3$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.