- Home
- Standard 11
- Mathematics
4-1.Complex numbers
easy
If $(x + iy)(p + iq) = ({x^2} + {y^2})i$, then
A
$p = x,q = y$
B
$p = {x^2},\,\,q = {y^2}$
C
$x = q,y = p$
D
None of these
Solution
(c) $(x + iy)(p + iq) = ({x^2} + {y^2})i$
==> $(xp – yq) + i(xq + yp) = ({x^2} + {y^2})i$
==> $xp – yq = 0,xq + yp = {x^2} + {y^2}$
==> $\frac{x}{q} = \frac{y}{p}$and$xq + yp = {x^2} + {y^2}$
Let $\frac{x}{q} = \frac{y}{p} = \lambda $. then $x = \lambda q,y = \lambda p$
$xq + yp = {x^2} + {y^2}$
==> $\lambda = {\lambda ^2}$==> $\lambda = 1$
$x = q,y = p$.
Standard 11
Mathematics