Gujarati
3 and 4 .Determinants and Matrices
normal

If $P$ is a $3 \times 3$ matrix such that $P^{\top}=2 P+I$, where $P^{\top}$ is the transpose of $P$ and $I$ is the $3 \times 3$ identity matrix, then there exists a column matrix $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ such that 

A

$PX =\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

B

$P X=X$

C

$P X=2 X$

D

$P X=-X$

(IIT-2012)

Solution

 $P ^{\top}=2 P + I $

$\Rightarrow \quad\left(P^{\top}\right)^{\top}=(2 P+I)^{\top} $

$\Rightarrow \quad P=2 P ^{\top}+ I $

$\Rightarrow \quad P=2(2 P + I )+ I $

$\Rightarrow \quad 3 P =-3 I \quad \Rightarrow \quad P =- I $

$\Rightarrow \quad P X=-I X=-X $

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.