If $f(x)=\frac{2^x}{2^x+\sqrt{2}}, x \in R$, then $\sum_{k=1}^{81} f\left(\frac{k}{82}\right)$ is equal to :

  • [JEE MAIN 2025]
  • A
    $41$
  • B
    $\frac{81}{2}$
  • C
    $82$
  • D
    $81 \sqrt{2}$

Similar Questions

The number of one-one function $f :\{ a , b , c , d \} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ such that $2 f(a)-f(b)+3 f(c)+$ $f ( d )=0$ is

  • [JEE MAIN 2022]

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$. If the composition of $f, \underbrace{(f \circ f \circ f \circ \ldots \circ f)}_{10 \text { times }}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$, then the value of $\sqrt{3 \alpha+1}$ is equal to....................

  • [JEE MAIN 2024]

Let $A=\{0,1,2,3,4,5,6,7\} .$ Then the number of bijective functions $f: A \rightarrow A$such that $f(1)+f(2)=3-f(3)$ is equal to $.....$

  • [JEE MAIN 2021]

Let $A = \{ {x_1},\,{x_2},\,............,{x_7}\} $ and $B = \{ {y_1},\,{y_2},\,{y_3}\} $ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f : A \to B$ that are onto, if there exist exactly three elements $x$ in $A$ such that $f(x)\, = y_2$, is equal to

  • [JEE MAIN 2015]

Domain of the function $f(x) = {\sin ^{ - 1}}(1 + 3x + 2{x^2})$ is